Download Software Working Principle Of Elevator Pdf

Posted by admin
  1. Download Principles Of Marketing Pdf
  2. Download Principles Of Management Pdf

How The Elevator Works. WORKING at HEIGHTS - WORKING at HEIGHTS If only I was. The Principles of Physical Fitness - The FITT Principle gives you the basic. Download free software working principle of elevator pdf, download free software working principle of about english definition dynamometer type wattmeter working.

Title: How The Elevator Works 1 How The Elevator Works. By Joseph Mackay Plaxco.

The University of the South. Sewanee, TN 37383 2 Why?. I find the elevator cool. Phobia when younger.

Gets people to destinations fast. Large cities wouldnt be the same. 3 Different Types. Freight Elevators. Stage Elevators 4 The Basic Design.

The basic design is a compartment that is somehow lifted. Two Types of Elevators.

Hydraulic. Rope-Geared 5 The Hydraulic Elevator.

The car is moved up and down using a fluid piston mounted inside a cylinder (Harris). Consists of three parts. Tank. Pump.

Valve 6 Hydraulic ElevatorsA Closer Look. The car is placed on a piston. Fluid Pumping System. A tank (off to the side) holds the fluid. When the valve closes, the car is lifted.

When the valve opens, the car is lowered. 7 Diagram of Hydraulic Elevator. The following link is from the website How Stuff Works written by Tom Harris.

How Elevators Work - Hydraulic 8 Hydraulic Disadvantages. Two Disadvantages. Must Have Enough Room. Energy Inefficient 9 Rope-Geared Elevators. These are the most popular types of elevators.

Rather than being pushed from below, these types of elevators are moved using cables 10 Rope-Geared Design. Cables attach to the car and through a sheave. The sheave is connected to an electric motor. Motor turns one way, elevator moves up.

Motor turns the other way, elevator moves down. The ropes are connected to a counterweight. The counterweight system serves as a means for conserving energy.

11 Rope-Geared Design (Contd). Rails are used to guide the elevator. Keep elevator and counterweights steady. Rope-geared elevators are much more efficient and safer. 12 Diagram of Rope-GearedElevator. The following link came from the How Stuff Works webpage written by Tom Harris. Rope-Geared Elevator Diagram 13 Safety Systems.

More ropes than needed. Built-in brake systems. Governor prevents the elevator from falling to the bottom of the shaft. Centrifugal force causes a brake system to activate.

Also has an electromagnetic brake that is activated if the elevator loses power. Automated Brake System at the top and bottom of the shaft. 14 Moving To Destinations. Modern elevators use computers. Slows down. Only answer up calls as going up and the same for going down.

Modern Smart systems take into account the busiest parts of the day. Press the floor you want in the lobby. Load Sensor 15 Works Cited.

Harris, Tom. How Elevators Work. www.howstuffworks.com/elevator. 2002. PowerShow.com is a leading presentation/slideshow sharing website. Whether your application is business, how-to, education, medicine, school, church, sales, marketing, online training or just for fun, PowerShow.com is a great resource.

And, best of all, most of its cool features are free and easy to use. You can use PowerShow.com to find and download example online PowerPoint ppt presentations on just about any topic you can imagine so you can learn how to improve your own slides and presentations for free. Or use it to find and download high-quality how-to PowerPoint ppt presentations with illustrated or animated slides that will teach you how to do something new, also for free. Or use it to upload your own PowerPoint slides so you can share them with your teachers, class, students, bosses, employees, customers, potential investors or the world.

Or use it to create really cool photo slideshows - with 2D and 3D transitions, animation, and your choice of music - that you can share with your Facebook friends or Google+ circles. That's all free as well! For a small fee you can get the industry's best online privacy or publicly promote your presentations and slide shows with top rankings. But aside from that it's free. We'll even convert your presentations and slide shows into the universal Flash format with all their original multimedia glory, including animation, 2D and 3D transition effects, embedded music or other audio, or even video embedded in slides.

All for free. Most of the presentations and slideshows on PowerShow.com are free to view, many are even free to download.

(You can choose whether to allow people to download your original PowerPoint presentations and photo slideshows for a fee or free or not at all.) Check out PowerShow.com today - for FREE. There is truly something for everyone! Presentations for free. Or use it to find and download high-quality how-to PowerPoint ppt presentations with illustrated or animated slides that will teach you how to do something new, also for free. Or use it to upload your own PowerPoint slides so you can share them with your teachers, class, students, bosses, employees, customers, potential investors or the world. Or use it to create really cool photo slideshows - with 2D and 3D transitions, animation, and your choice of music - that you can share with your Facebook friends or Google+ circles. That's all free as well!

For a small fee you can get the industry's best online privacy or publicly promote your presentations and slide shows with top rankings. But aside from that it's free. We'll even convert your presentations and slide shows into the universal Flash format with all their original multimedia glory, including animation, 2D and 3D transition effects, embedded music or other audio, or even video embedded in slides. All for free. Most of the presentations and slideshows on PowerShow.com are free to view, many are even free to download. (You can choose whether to allow people to download your original PowerPoint presentations and photo slideshows for a fee or free or not at all.) Check out PowerShow.com today - for FREE.

There is truly something for everyone!

Last updated: April 7, 2017. Hit the top button on the elevator and prepare yourself for a long ride: in just a few days you'll be waving back from space!

Elevators that can zoom up beyond Earth have certainly captured people's imagination in the decade or so since space scientists first proposed them—and it's no wonder. But in their time ordinary office elevators probably seemed almost as radical. It wasn't just brilliant materials such as and that allowed modern skyscrapers to soar to the clouds: it was the invention, in 1861, of the safe, reliable elevator by a man named Elisha Graves Otis of Yonkers, New York. Otis literally changed the face of the Earth by developing a machine he humbly called an 'improvement in hoisting apparatus,' which allowed cities to expand vertically as well as horizontally. That's why his invention can rightly be described as one of the most important machines of all time. Let's take a closer look at elevators and find out how they work!

Photo: How far will the top button take you? All the way to space? NASA is already working on an elevator that could carry materials from the surface of Earth up to geostationary Earth orbit, 35,786km (22,241 miles) up. Illustration by artist Pat Rawling courtesy of. What is an elevator?

Photo: A typical, modern, electronically controlled elevator. If you wait for the cars to move out of the way, you can often see some of the workings and figure out which bits do what. The annoying thing about elevators (if you're trying to understand them) is that their working parts are usually covered up! From the viewpoint of someone traveling from the lobby to the 18th floor, an elevator is simply a metal box with doors that close on one floor and then open again on another. For those of us who are more curious, the key parts of an elevator are:.

One or more cars (metal boxes) that rise up and down. Counterweights that balance the cars.

An that hoists the cars up and down, including a system. A system of strong metal cables and running between the cars and the motors. Various safety systems to protect the passengers if a cable breaks. In large buildings, an control system that directs the cars to the correct floors using a so-called 'elevator algorithm' (a sophisticated kind of mathematical logic) to ensure large numbers of people are moved up and down in the quickest, most efficient way (particularly important in huge, busy skyscrapers at rush hour). Intelligent systems are programmed to carry many more people upward than downward at the beginning of the day and the reverse at the end of the day. How elevators use energy Scientifically, elevators are all about.

To get from the ground to the 18th floor walking up stairs you have to move the weight of your body against the downward-pulling force of gravity. The energy you expend in the process is (mostly) converted into potential energy, so climbing stairs gives an increase in your potential energy (going up) or a decrease in your potential energy (going down). This is an example of the in action. You really do have more potential energy at the top of a building than at the bottom, even if it doesn't feel any different.

To a scientist, an elevator is simply a device that increases or decreases a person's potential energy without them needing to supply that energy themselves: the elevator gives you potential energy when you're going up and it takes potential energy from you when you're coming down. In theory, that sounds easy enough: the elevator won't need to use much energy at all because it will always be getting back as much (when it goes down) as it gives out (when it goes up). Unfortunately, it's not quite that simple. If all the elevator had were a simple hoist with a cage passing over a pulley, it would use considerable amounts of energy lifting people up but it would have no way of getting that energy back: the energy would simply be lost to friction in the cables and (disappearing into the air as waste ) when the people came back down. How much energy does an elevator use? Photo: Elevators don't just hang from a single cable: there are several strong cables supporting the car in case one breaks. If the worst does happen, you'll find there's often an emergency telephone you can use inside an elevator car to call for assistance.

Download Principles Of Marketing Pdf

Working

If an elevator has to lift an elephant (weighing let's say 2500 kg) a distance of maybe 20m into the air, it has to supply the elephant with 500,000 joules of extra potential energy. If it does the lift in 10 seconds, it has to work at a rate of 50,000 joules per second or 50,000 watts, which is about 20 times as much power as a typical uses. Suppose the elevator is carrying elephants all day long (10 hours or 10 × 60 = 600 minutes or 10 × 60 × 60 = 36,000 seconds) and lifting for half that time (18,000 seconds). It would need a grand total of 18,000 × 50,000 = 900 million joules (900 megajoules) of energy, which is the same as 250 kilowatt hours in more familiar terms. In fact, the elevator wouldn't be 100 percent efficient: all the energy it took from the supply wouldn't be completely converted into potential energy in rising elephants. Some would be lost to friction, air resistance (drag), and other losses in the mechanism.

So the real energy consumption would be somewhat greater. That sounds like a huge amount of energy—and it is!

But much of it can be saved by using a counterweight. The counterweight Photo: The counterweight rides up and down on wheels that follow guide tracks on the side of the elevator shaft. The elevator car is at the top of this shaft (out of sight) so the counterweight is at the bottom.

When the car moves down the shaft, the counterweight moves up—and vice versa. Each car has its own counterweight so the cars can operate independently of one another. On this picture, you can also see the doors on each floor that open and close only when the elevator car is aligned with them. In practice, elevators work in a slightly different way from simple hoists. The elevator car is balanced by a heavy counterweight that weighs roughly the same amount as the car when it's loaded half-full (in other words, the weight of the car itself plus 40–50 percent of the total weight it can carry). When the elevator goes up, the counterweight goes down—and vice-versa, which helps us in four ways:. The counterweight makes it easier for the motor to raise and lower the car—just as sitting on a see-saw makes it much easier to lift someone's weight compared to lifting them in your arms.

Thanks to the counterweight, the motor needs to use much less force to move the car either up or down. Assuming the car and its contents weigh more than the counterweight, all the motor has to lift is the difference in weight between the two and supply a bit of extra force to overcome friction in the pulleys and so on. Since less force is involved, there's less strain on the cables—which makes the elevator a little bit safer.

The counterweight reduces the amount of energy the motor needs to use. This is intuitively obvious to anyone who's ever sat on a see-saw: assuming the see-saw is properly balanced, you can bob up and down any number of times without ever really getting tired—quite different from lifting someone in your arms, which tires you very quickly.

This point also follows from the first one: if the motor is using less force to move the car the same distance, it's doing less work against the force of gravity. The counterweight reduces the amount of braking the elevator needs to use. Imagine if there were no counterweight: a heavily loaded elevator car would be really hard to pull upwards but, on the return journey, would tend to race to the ground all by itself if there weren't some sort of sturdy brake to stop it. The counterweight makes it much easier to control the elevator car. In a different design, known as a duplex counterweightless elevator, two cars are connected to opposite ends of the same cable and effectively balance each other, doing away with the need for a counterweight. The safety brake Everyone who's ever traveled in an escalator has had the same thought: what if the cable holding this thing suddenly snaps? Rest assured, there's nothing to worry about.

If the cable snaps, a variety of safety systems prevent an elevator car from crashing to the floor. This was the great innovation that Elisha Graves Otis made back in the 1860s. His elevators weren't simply supported by ropes: they also had a ratchet system as a backup. Each car ran between two vertical guide rails with sturdy metal teeth embedded all the way up them.

At the top of each car, there was a -loaded mechanism with hooks attached. If the cable broke, the hooks sprung outward and jammed into the metal teeth in the guide rails, locking the car safely in position. How the original Otis elevator worked Artwork: The Otis elevator. Thanks to the wonders of the Internet, it's really easy to look at original patent documents and find out exactly what inventors were thinking.

Here, courtesy of the US Patent and Trademark Office, is one of the drawings Elisha Graves Otis submitted with his 'Hoisting Apparatus' patent dated January 15, 1861. I've colored it in a little bit so it's easier to understand. Greatly simplified, here's how it works:. The elevator compartment (1, green) is raised and lowered by a hoist and system (2) and a moving counterweight (not visible in this picture). You can see how the elevator is moving smoothly between vertical guide bars: it doesn't just dangle stupidly from the rope!.

The cable that does all the lifting (3, red) wraps around several pulleys and the main winding drum. Don't forget this elevator was invented before anyone was really using: it was raised and lowered by hand!. At the top of the elevator car, there's a simple mechanism made up of spring-loaded arms and pivots (4).

If the main cable (3) breaks, the springs push out two sturdy bars called 'pawls' (5) so they lock into vertical racks of upward-pointing teeth (6) on either side. This ratchet-like device clamps the elevator safely in place.

Photo: A modern elevator has much in common with the original Otis design. Here you can see the little wheels at the edges of an elevator car that help it move smoothly up and down its guide bars. According to Otis, the key part of the invention was: 'having the pawls and the teeth of the racks hook formed, essentially as shown, so that the weight of the platform will, in case of the breaking of the rope, cause the pawls and teeth to lock together and prevent the contingency of a separation of the same.'

If you'd like a more detailed explanation, take a look at the original Otis patent,. It explains more fully how the winch and pulleys work with the counterweight. Did Otis invent the elevator? He invented the safety elevator: he noted how ordinary elevators could fail and came up with a better design that made them safer. The Otis elevator dates from the middle of the 19th century, but ordinary elevators date back much further—as far as Greek and Roman times. We can trace them back to more general kinds of lifting equipment such as cranes, and; ancient water-raising devices such as the (sometimes spelled shadoof), based on a kind of swinging see-saw design, may well have inspired the use of counterweights in early elevators and hoists. Speed governors Most elevators have an entirely separate speed-regulating system called a governor, which is a heavy with massive mechanical arms built inside it.

Normally the arms are held inside the flywheel by hefty springs, but if the lift moves too fast, they fly outward, pushing a lever mechanism that trips one or more braking systems. First, they might cut power to the lift motor. If that fails and the lift continues to accelerate, the arms will fly out even further and trip a second mechanism, applying the brakes. Some governors are entirely mechanical; others are electromagnetic; still others use a mixture of mechanical and electronic components.

Artwork: How a governor works. The lift motor (1) drives gears (2) that turn the sheave (3)—a grooved wheel that guides the main cable. The cable supports both the counterweight (4) and lift car (5). A separate governor cable (6) is attached to the lift car and the governor mechanism on the right. The governor consists of a flywheel with centrifugal arms inside it (7).

If the lift moves too quickly, the arms fly outward, tripping a safety mechanism that applies brakes to the governor cable (8) and slows it down. Because the governor cable is now moving slower than the main cable and the car itself, it activates another mechanism that causes friction brakes to shoot out from the elevator car onto its outer guide rails, bringing it smoothly and safely to a halt (in a similar way to the original Otis safety mechanism). Artwork: An example of a fully mechanical governor mechanism designed by Otis engineers in the 1960s.

You can see the flywheel (gray) with its centrifugal arms inside (light blue) and the springs that hold them in (yellow). When the wheel turns too fast, the arms fly outward, tripping a braking device that applies a pair of spring-loaded arms (darker blue) to the governor rope (brown). From by Joseph Mastroberte, Otis Elevator Company, patented June 27, 1967. Artwork courtesy of US Patent and Trademark Office (with colors added to make it easier to understand). Other safety systems Modern elevators have multiple safety systems. Like the cables on a suspension, the cable in an elevator is made from many metal strands of wire rope twisted together so a small failure of one part of the cable isn't, initially at least, going to cause any problems. Most elevators also have multiple, separate cables supporting each car, so the complete failure of one cable leaves others functioning in its place.

Even if all the cables break, this system will still hold the car in place. Finally, if you've ever looked at a transparent glass elevator, you'll have noticed a giant or buffer at the bottom to cushion against an impact if the safety brake should somehow fail. Thanks to Elisha Graves Otis, and the many talented engineers who've followed in his footsteps, you're much safer inside an elevator than you are in a car! How does a hydraulic elevator work? Artwork: A hydraulic elevator with an energy-saving counterweight. In this design, the passenger car (1) is supported by a direct-acting hydraulic ram (2), connected through a hydraulic pump (3) operated by a motor (4) connected to a second hydraulic ram (5) that operates a counterweight (6).

As the elevator car falls, the pump transfers hydraulic fluid from one ram (2) to the other (5), so avoiding the need for a fluid reservoir. My drawing is based on a design by Otis described in by Renzo Toschi, Otis Elevator Company, patented November 2, 1999.

Elevators that work with cables and wheels are sometimes called traction elevators, because they involve a motor pulling on the car and counterweight. Not all elevators work this way, however. In small buildings, it's quite common to find hydraulic elevators that raise and lower a single car using a (a fluid-filled piston similar to the ones that operate construction machines like bulldozers and cranes). Hydraulic elevators are mechanically simpler and therefore cheaper to install, but since they typically don't use counterweights, they consume more power raising and lowering the car. Sometimes the hydraulic ram is installed directly underneath the car and pushes it up and down (a design known as direct-acting). Alternatively, if there isn't room to do that, the ram can be mounted to the side of the lift shaft, operating the car using a system of ropes and sheaves (in a design known as indirect-acting). More complex elevators, like the one shown here, use multiple hydraulic cylinders and counterweights.

Find out more On this website. Other useful sites.: Industry magazine featuring lots of interesting material about the latest developments in the world of 'people movement.'

.: A scrolling chronology that explores the early history of Elisha Graves Otis and the company he founded.: Lots of fascinating historical snippets and memories of elevators from yesteryear. Articles. by Julie Besonen. The New York Times.

August 22, 2014. A fascinating introduction to The Elevator Historical Museum. by Kris De Decker, Low-Tech Magazine, March 25, 2010. A more general look at the history of mechanical lifting. by Sean Couglan, BBC News, April 6, 2007. A short historical review of lift technology, from Otis to the Taipei 101.: BBC News, 16 December 2004. How fast can lifts go?

Books Elevators. by George R. Strakosch and Robert S. John Wiley, 2010. An up-to-date reference about modern elevator systems produced with Elevator World magazine. by Gina Barney and Lutfi Al-Sharif. Routledge, 2016.

Explores the theory of designing elevators (and other transportation systems) for the most efficient movement of large numbers of people. History. by Lee E.

Download Software Working Principle Of Elevator Pdf

Elevator World, 2002. This fascinating book covers the period 1850–1900, beginning with early freight elevators, looking at the role of elevators in the development of skyscrapers, and ending with state-of-the-art safety elevators from around 1900. PDF by Patrick Carrajat. Lir Group, 2009.

The book can be downloaded for free from the Elevator Preservation Blog site. by Donald R. Routledge, 1984.

Download Principles Of Management Pdf

Although this book doesn't cover elevators (so far as I remember), it does go into excellent detail about ancient water-raising machines used for irrigation, which were among the earliest mechanical lifting devices.